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STRUCTURES AND AN EVALUATION OF THE METEOROID

HAZARD TO SPACE VEHICLES

By C. Robert Nysmith and James L. Summers

SUMMARY

Small pyrex glass spheres, representative of stoney meteoroids,
were fired into 2024-T3 aluminum alcladmultiple-sheet structures at

velocities to Ii_000 feet per second to evaluate the effectiveness of

multisheet hull construction as a means of increasing the resistance of

a spacecraft to meteoroid penetrations. The results of these tests indi-

cate that increasing the number of sheets in a structure while keeping

the total sheet thickness constant and increasing the spacing between

sheets both tend to increase the penetration resistance of a structure of

constant weight per unit area. In addition, filling the space between

the sheets with a light filler material was found to substantially increase

structure penetration resistance with a small increase in weight.

An evaluation of the meteoroid hazard to space vehicles is presented

in the form of an illustrative example for two specific lunar mission

vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled,

double-sheet hull vehicle. The evaluation is presented in terms of the

:Best" and the "worst" conditions that might be expected as determined

from astronomical and satellite measurements, high-speed impact data_ and

hypothesized meteoroid structures and compositions.

It was observed that the vehicle flight time without penetration can

be increased significantly by use of multiple-sheet rather than single-

sheet hull construction with no increase in hull weight. Nevertheless,

it is evident that a meteoroid hazard exists, even for the vehicle with

the selected multiple-sheet hull.

INTRODUCTION

Among the many problems besetting a space-vehicle designer is that

of protecting the vehicle from damage from the impact of meteoroids.

These pieces of cosmic debris travel at very high velocity and, on impact
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with a space vehicle, may completely puncture its thin-skinned, light-
weight hull, even if the meteoroids are quite small. Fortunately, the
number of meteoroids diminishes as their size increases so that the most
likely damageto a vehicle is a small hole in the outer skin. They are
numerous enough, however, that one _nst consider the possibility of a
meteoroid large enough to rupture a hull extensively, thereby causing an
explosive decompression, or to damageseriously the contents of a vehicle
after piercing the skin. The chance of being struck increases, of course,
with the size of the vehicle and the duration of the voyage.

The most straightforward method of protecting a vehicle from
meteoroid penetration would be to make the outer skin from a single sheet
of material thick enough to resist penetration by the largest meteoroids
that would be encountered on the voyage, taking into account the size of
the vehicle, the length of the flight, and the maxinnnnprobability of
encounter allowed by the level of "reasonable risk" for the flight. This
approach, however, would result in a vehicle of unacceptably large weight.

A more sophisticated approach would be to construct a double hull of
sheets spaced a distance apart. The value of this approach has been
recognized for many years in the design of armor for military vehicles
(e.g., see ref. I), although the application to spacecraft was first sug-
gested by Dr. Fred L. Whipple of the Harvard College Observatory (ref. 2).
Dr. Whipple proposed that the spacecraft be surrounded by a thin outer
shell spaced a distance out from the main hull, which he called a "meteor
bumper." He suggested that a meteoroid would vaporize on impact with the
bumper (along _-lth vaporization of someof the bumper material) and its
ability to penetrate the hull would thereby be sharply reduced. On the
other hand, the meteoroid may possibly just be fragmented on impact with
the bumper and not vaporized. If this is the case, the cloud of meteoroid
and bumper fragments will diverge laterally with distance behind the
bumper. In this way, the kinetic energy of the meteoroid will not be
concentrated in a single solid body but will be divided amongthe broken
meteoroid and bumper fragments. The inner hull, because of the larger
affected area, will then be more resistant to penetration by the smaller,
less potent particles. The logical extension of this concept would be to
employ a number of thin shells to provide possibly even more protection,
the objective being to design a space structure having a high degree of
resistance to total pentration in comparison to a single-hulled space
structure of the sameweight.

The purpose of this report is twofold. First, the results of the
impact tests in the AmesHypervelocity Ballistic Range are presented.
These are tests of impact on multiple-sheet structures by projectiles
representative of stoney meteoroids. Second, an evaluation of the mete-
oroid hazard to space vehicles is discussed on the basis of astronomical
and space-probe measurements, high-speed impact data, and hypothesized
meteoroid structures and compositions. In addition, the effectiveness of
multiple-sheet structures in increasing resistance to structural penetra-
tion is estimated for a lunar mission vehicle.
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NOTATION

cross-sectional area of meteoroid, sq ft

a constant, the product of the number of meteoroids and the meteoroid
mass to the kth power

drag coefficient of a body traveling at high velocity, 0.92

speed of sound in target material, the velocity of propagation of a

plane elastic wave along the axis of a slender prismatic bar,
ft/sec

diameter of spherical projectile, in.

average visual intensity of radiation of a meteor, considered as

covering the time of visibility of the meteor, visual ergs/sec

exponent of the meteoroid mass in the number-mass relationship

visible length of meteor trajectory, ft

mass of meteoroids, grams

number of impacts of meteoroids of mass m or greater,
impacts/ft2-day

penetration, measured from original target surface, in.

ratio of the measured ballistic limits between a multiple-sheet

target and a single-sheet target of the same total sheet thickness

duration of meteor visibility, sec

total sheet thickness of multiple-sheet and single-sheet structures,
in.

velocity of projectile or meteoroid, ft/sec

total meteor luminous efficiency, the fraction of initial meteor

kinetic energy converted into visible light

mass density 3 gm/cc

mass density of atmosphere, slugs/ft s

.... _ ' i ' " .... " _" ....... ":,, !,,_ _ ,.: : ,,- L '._-: :q'ijl i '_:.:,' ::.' _
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Subscripts

H

P

S

t

multiple-sheet structure

projectile

single-sheet structure

target

IMPACT TESTS ON MULTIPLE-SHEET STRUCTURES

Experimental Procedure

The experiment consisted of firing a projectile into a target placed

in the target chamber of a free-flight range. The apparatus is illustrated

in figure ! and is described in detail in reference 3- The principal

components are the gun_ the blast tank, two velocity chambers, and a

target chamber.

The projectiles were spheres of pyrex glass with a density of

2.23 gm/cc. This material was selected because it shatters upon impact

and, thus_ is believed to be representative of stoney meteoroids. The

sphere diameters were 1/8 inch in all tests and were the smallest that

could be accommodated in the range at that time. By using the minimum

size of sphere, the laboratory tests approached the actual conditions of

meteoroid impact as closely as possible, although the difference in scale

is still around two orders of magnitude.

The spheres were fired from a powder gun at velocities to 8000 feet

per second_ and from a light-gas gun to higher velocities. Since the

guns were 0.22 caliber, the spheres were fired in sabots which not only

guided them down the bore of the gun barrel, but also protected them from

the damaging effects of the propellant gases. The sabots were constructed

so that they separated into four pieces on leaving the muzzle and were

trapped in the blast tank.

In the velocity chambers, four pairs of spark photographs were taken

of the spheres at locations spaced over 4 feet of their trajectory.

Cycle-counter chronographs recorded the time at which each spark photo-

graph was taken. These records provided measurements of time and distance

along the trajectory, and the velocity at impact could be accurately

determined from them. The spark photographs also showed the physical

condition of the sphere in flight and established that the sphere had

survived the firing undamaged and was flying true to the target.



A
4

_! 3

The targets were multiple-sheet structures consisting of thin,

2024-T3 aluminum alclad sheets placed one behind the other. They were

placed at the end of the target chamber (see fig. I) and were alined _-ith

the front face normal to the projectile trajectory. In these tests, the

number of sheets and the thickness of each sheet in a target were varied

so that the sum of the thicknesses of all the sheets in each target had

the same value of 0.062 inch throughout the series of tests. In this way,

the weight per unit area of the aluminum sheets in all the targets was

the same. The number of sheets was varied from one to four. Two spacings

between the sheets were tested, 1/2 inch and i inch. In a particular

multiple-sheet target all sheets had the same thickness (the value being

adjusted according to the number so that the combined thickness equaled

0.062 inch) and the spacing between successive sheets was kept constant

(1/2 inch or I inch).

In one test, the effect of a filler material placed between the

sheets was investigated. This filler consisted of fluffy_ glass-wool

battlng_ customarily used for building insulation. It was tried in only

the two-sheet target with the 1-inch spacing. Actually, two glass-wool

baits, each i inch thick in normal use, were placed between the aluminum

sheets, sad the two baits were then compressed to a 1-inch total thickness.

The weight per unit area of the target in this particular case was 3 0

percent greater than in the other tests of the program because of the

weight of the filler material.

Experimental Results

The penetration resistance of a multiple-sheet structure is measured

by its 'Ballistic limit" in these tests. The ballistic limit is a term

taken from ordnance usage and is defined as "The particular velocity,

...determined by test, at which the plate," (the multiple-sheet structure

in the present tests) "will just resist complete penetration by the

projectile in question." (See ref. 4.) It is believed to be a good

criterion for impact research on the meteoroid hazard to spacecraft

because the craft's hull must maintain a completely tight enclosure

throughout the voyage.

The results of the impact tests are shown in figure 2 with the

ballistic limit plotted as ordinate, the number of sheets in the target

as abscissa_ and the spacing between sheets as an independent parameter.

The ballistic limit for the target with the glass-wool filler is also

plotted on this graph.

It can be seen that the penetration resistance of the structure is

increased by a factor of 1-77 when the single sheet of material is divided

into two sheets_ each half as thick as the original_ and spaced 1/2 inch

apart. When the spacing between the sheets is increased from 1/2 to I

inch, the penetration resistance is increased by about a factor of 1.25
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or by a factor of abcut 2.2 over a single sheet of material of the same

total thickness. Increasing the number of sheets comprising the structure

from two to four with each sheet now one-fourth as thick as the original

also increases the structure's ballistic limit. It can be seen that the

four-sheet structures are about 1.2 times as effective as the two-sheet

structures for both the I/2-inch and 1-inch sheet spacings. Consequently,

increasing the number of sheets from one to two is considerably more

effective than increasing the number of sheets from two to four. In

addition_ it can be seen that the two-sheet structure with the l-inch

spacing is actually more resistant to penetration than the four-sheet

structure _-lth the I/2-inch spacing. When fabrication ease and total

structural weight_ including members to hold the various sheets at their

required locations, are considered, it seems apparent that two-sheet

structures are probably the most efficient multiple-sheet structures.

The most substantial gain in penetration resistance is achieved by

filling the void between the sheets with a glass-wool filler. For the

one case investlgated_ namely, a two-sheet structure with a sheet spacing

of I inch, the penetration resistance of the structure with the glass-

wool filler is about twice as great as that of the structure without the

filler material and about 4.4 times greater than that of a single sheet

of material of the same total-sheet thickness. I% should be emphasized,

however_ that the weight of the glass-wool-filled structure is 30 percent

greater than that of the other structures tested in the program.

Since the ballistic limit of a structure is the criterion for

evaluating the penetration resistance of a structure, the penetration

resistance can also be expressed in terms of the projectile kinetic energy

that can be absorbed by a structure. The kinetic energy of the projectile

is plotted against the number of sheets of a structure in figure 3 corre-

sponding to the plot in figure 2. It can be seen that the two-sheet

structure _-ith the glass-wool filler and the 1-inch sheet spacing is

capable of absorbing 20 times the projectile kinetic energy that can be

absorbed by a single sheet of material of the same total-sheet thickness,

or 19 times per unit weight, since the glass-wool-filled structure was

heavier.
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EVALUATION OF METEOR01DHAZARD TO SPACE VEHICLES

The hazard that a spacecraft faces from meteoroids depends on the

probability of the craft being struck by a meteoroid large enough to do

significant damage. This probability depends, in turn, on the meteoroid

distribution, velocities, structure, composition and penetration capabil-

ities_ and the spacecraft structure, size, and mission. These factors,

then_ must be considered in an evaluation of the meteoroid hazard in

space.
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This evaluation of the meteoroid hazard is undertaken as am illustra-

tive example because it is clear from the outset that the results will

apply strictly only to the particular craft and mission chosen. The

purpose here is to seek an answer to the question: "Is the meteoroid

hazard serious enough to be considered in the design of a spacecraft?"

It is believed that a representative example will provide a partial

answer, at least. The analysis that follows will be based on a hypothet-

ical vehicle designed for a mammed flight to the moon and return.

In assessing the damage of meteoroid impact one must first specify

what is meant by "significant damage." This will be defined as a "complete
puncture of the vehicle hull."

_wo designs of outer hull structure will be considered. One is a

single, constant-thickness skin; this is believedto be the simplest type

of structure one might use to preserve the so-called 'tshirt sleeve"

environment desired for mammed spacecraft. The other is a double hull

consisting of two equal-thickness skins separated by a space loosely filled

with glass-wool insulation; this is the structure giving the greatest

resistance to a penetration for a given weight per unit area in the tests

reported in a previous section. Although it is considerably better than

a momocoque hull, the double hull may still be far from the "optimum"

structure (giving the greatest penetration resistance for a given weight).

However, it will serve in the example as a "first step" in the development

of effective structures for minimizing the meteoroid hazard.

Meteoroid Distribution

Our knowledge of meteoroids comes from three sources: (i) meteorites

recovered from the surface of the earth; (2) observations of meteors

visually, with photographic cameras, amd by radar; and (3) direct measure-

ment of meteoroid impacts by satellites and space probes. The trajectories

and velocities of meteoroids in space are determined directly from the

meteor observations. Their masses are determined indirectly from the same

records through use of their atmospheric deceleration or their meteoric

luminosity. The distribution of meteoroids in space and, in particular,

the number of meteoroids of a given mass crossing a unit area per unit

time can be estimated from meteor observations made at various locations

over extended periods of time. It is found in referemces 5 and 6 that

the mass-number relation may be expressed by the equation

= C (1)

where N is the number of meteoroids of mass m or larger, C is a

constamt, and k is an exponent having a value mear umity. The values

given to k and C vary somewhat from one observer to another. Whipple

in reference 5 gives k = i and C = 5.4×10 -9 (for m in grams and N
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in number per square foot per day). _awkins and Upton in reference 6

give k -- 4/3 and C = 5.1><10 -9.

The direct measurement of meteoroid impacts by rockets and artificial

earth satellites has also been utilized to determine the distribution of

meteoroids in space (see refs. 7 and 8). The impact measuring instrumenta-

tion for most space experiments has consisted of either wire grids or

meteoroid momentum-sensitive plates. The wire-grid technique requires

that the meteoroid strike one of the elements in the wire grid such that

the circuit resistance and_ hence_ the telemetered signal will be altered

after impact. This technique is limited by the fact that only the number

of impacts is recorded and the indication of meteoroid size or mass is

restricted to an estimate of the smallest meteoroid capable of severing

a _-ire on impact. The momentum plate technique_ on the other hand_ is

believed to be sensitive to the meteoroid momentum. When the plate is

struck by a meteoroid, a crystal mounted on the back of the plate is

strained and a signal is produced. However, the correlation between the

signal magnitude and the meteoroid momentum for actual meteoroid impacts

has not been made in the experiments to date. Any signal above the

minimum sensitivity of the plate is recorded as a "count" and the momentum

plate thus provides data similar to the wire grids in recording the total

number of meteoroids with momentum greater than the threshold response

of the instrumemt.

The rocket and satellite data have been analyzed to obtain the

value of C in equation (i) assuming that k -- i. The minimum value of

mass recorded in each experiment was determined from estimates of the

instrument sensitivity (assuming an average meteoroid velocity of 98,400

feet per second). The results are tabulated in table l, which lists the

vehicle_ the launch date_ the minimum mass sensitivity of the recording

device_ and the value of C obtained as the product Nm.

The assumption that k -- i was tested by extrapolating the meteor

observations of N and m (m > I0 -_ grams) to the values recorded in the

satellite experiments (m > i_ -l° grams). It was found that k -- i brought

the satellite and meteor data into the best agreement. Other investigators

have reached the same conclusion: Jonah (ref. 9) gives k = i_ Broyles

(ref. I0) gives k = 1.09; Bjork (ref. !i) gives k = 10/9.

The data in table I_ together with the meteor observations_ give an

average value of C = 2XlO -8 (grams times impacts per square foot per day).

Inspection of all the meteoroid data in table I, however_ shows that the

values of C range (with certain exceptions) an order of magnitude

larger and smaller than the average, that is, 2x10 -7 < C < 2XlO -9. This

variation is believed to be a fair estimate of the uncertainty in our

present knowledge of the numbers and sizes of meteoroids. It would be

misleading to pretend that our knowledge of the meteoroid distribution

is more precise than this or to use an average value of C without clearly

stating its upper and lower limits. Because the variation in C is such
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a critical factor in evaluating the meteoroid hazard, it was decided to

use two values of C, the upper and lower limits, rather than an average.

Consequently, this evaluation will consider a region of meteoroid distri-

butions bounded by an optimistic distribution of Nm = 2X10 -9 and a

pessimistic distribution of Nm -- 2><10 -7, shown by the two plots of m

versus N in figure 4. It should be noted that these distributions

consider only sporadic meteoroids and do not include those meteoroids

associated with predictable meteor showers.

Meteoroid Velocities

The observations of meteors as they enter the earth's atmosphere

have enabled astronomers to make a number of statements as to the origin

of, and hence, the velocities of meteoroids. Whipple in reference

says, "Practically all photographic meteors are of cometary origin. The

hyperbolic content, if present at all, is below i percent and the contri-

butions by asteroidal material appear to be relatively small, if present.

It seems relatively safe to extrapolate this conclusion to smaller bodies

in space in view of arguments concerning both the observed and theoretical

distributions of particle sizes." Since the meteoroids of interest here

seem to be members of the solar system, their velocities are limited to a

minimum of 36_000 ft/sec due to the earth's gravitational field and to a

maximum of 236,000 ft/sec, which is the maximum velocity relative to the

earth, attainable at the earth's distance from the sun by a particle

which is a member of the solar system. It has been observed (ref. _)

that, "A velocity of 28 km/sec" (91,900 ft/sec) "is average for photo-

graphic meteors. Undoubtedly the velocity falls off for smaller meteoroids

as we deal more and more with particles whose orbital eccentricities and

dimensions have been reduced by physical effects .... " Data relating

meteoroid mass and meteoroid velocity are presented in table I of refer-

ence 9 and are presented as figuare 9 of this report. The velocities

corresponding to specific meteoroid masses will be used according to these

data in the evaluation presented in this re, or%.

Meteoroid Structures and Composition

Until recently, it was thought that all meteoroids were compact

stoney or iron-nickel bodies similar to meteorites found on the surface

of the earth. However, photographic observations of the 1946 Draconid

meteor shower by Jacchia, _opal, and Millman (ref. 12) indicated that

Draconid meteors were not ordinary meteors. It was observed that the

meteoroid masses calculated from drag considerations did not agree with

the masses calculated from luminosity considerations. Specifically, it
was observed that "...the Draconid meteors emitted at least one hundred

times more luminous energy per unit mass than ordinary meteors do." This
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discrepancy led the observers to conclude that "...the Draconid meteors
of October I0, 1946, were composedof softer material, more easily melted
or vaporized than ordinarymeteors." With this fact in mind, Fred L.
Whipple (ref. 5) proposed a porous dustball type of meteoroid _ith a
density of 0.05 gm/cc which, in effect, increased the "dynamic masses to
agree with the "photometric" masses (see appendix A). He attributes the
very low density meteoroids (dustball meteoroids) to those produced during
the disintegration of comets. From his icy-conglomerate model of the core
of a comet (ref. 13), he suggests that vaporization of the frozen gases
in the comet core could result in a meteoroid with a highly porous
structure.

Ernst _pik, in reference 14, suggests another type of meteoroid
structure. Opik considers the meteoroid to be made up of many tiny bits
of stone, each with a density of 3-5 gm/cc. However, he considers these
grains of stone to be spaced in such a way that the over-all density of
the meteoroid is still quite small.

Another meteoroid concept has been presented by B. lu Levin in
reference 15. Levin contends that meteoroid fragmentation accounts for
the observed discrepancies between dynamic and photometric masses since
dynamic mass measurements are calculated from the observed decelerations
of individual meteoroid fragments, whereas the photometric mass measure-
ments are determined from observations of the total meteoroid mass.
Levin states, "However, the minuteness of the dynamic masses of meteoroids
is a result of partial fragmentation, not of the minuteness of their
densities."

Finally, there are the solid iron-nickel meteoroids, those bodies
which are believed to come from that region of space called "the asteroid
belt." These bodies, however, occur quite infrequently, so rarely in
fact, that they will not be considered here (see refs. 5, 9, I0, ii, and
14).
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Meteoroid Penetration Capabilities

The design of a spacecraft structure requires a generalknowledge of

the variation of penetration resistance when the structure is changed

and the conditions of impact are varied. The limited data from the tests

of this report cannot supply this information directly. Not only were

the target configurations very few but also the ballistic limit gives

only a measure of the penetration resistance for one projectile at one

velocity. On the other hand, a fair knowledge does exist for "thick"

targets, that is, for metal sheets where thickness is great compared to

the depth of an impact crater. Furthermore, tests at the Langley Research

Center have established a relation between the thickness of a "thin" plate

and the depth of a crater in a "thick" plate produced by a projectile
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fired at the ballistic limit of the thin plate (ref. 16). This relation

combined with the thick target data gives us the key to the design of the

spacecraft structure.

The effect of meteoroid impact on the thin, single or multisheet

structure is analyzed in the following manner. One first computes the

depth of the crater, p, produced in a "thick" 2024-T 3 aluminum alclad

sheet by a spherical meteoroid of density, pp, mass, m, and velocity, V,

from the penetration formula presented in reference 17.

p --- 2.$3mZ/3Plo,,/3 V_p_._ °-/3 (2)

where c is the bar speed of sound in the aluminum (c = 16_800 ft/sec).

Next_ one computes the thickness of the single sheet_ t, that the meteor-

oid would have just perforated at velocity V from the relationship

given in reference 16, namely,

t - l.sp (3)

Finally, one goes from single-sheet %omultisheet structures by making

the assumption that the ratio, R, of the ballistic limits obtained from

the tests of this report holds for all conditions of impact, namely_

vM
-- --R = constant (4)
VS

where V M is the ballistic limit of the nmltiple-sheet target and V S
is the ballistic limit of the single-sheet target. Since the ballistic

limit is defined as the velocity at which complete target penetration is

just prevented, formulas (2), (3), and (4) can be combined to give a

formula for the minimum mass of meteoroid which endangers the spacecraft,

namely_

tsSR 2
m = (5)

76 .Spp(V/Pt c )a

where t S is the thickness of the single-sheet target whose ballistic

limit is I/R of the multiple-sheet structure. If only a thin, single

sheet is the target_ it is clear that R = i and t S = t.

A unique problem arises when an 0pik granular cluster meteoroid is

considered. Substitution of 0.05 gm/cc for the density of the granular

cluster into formula (2) indicates that the damage resulting from the

impact of this meteoroid will be very slight. On the other hand, if this

meteoroid is considered to be a nonhomogeneous body consisting of a number
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of grains of stone, each with a density of 3-5 gm/cc, spaced so that the
over-all meteoroid density is 0.05 gm/cc, then the resulting damagecan
be quite severe, depending upon the interaction between the individual
meteoroid grain impacts. Since this grain interaction factor is unknown,
it is not feasible to calculate granular cluster damageat this time.
Consequently, it m-ill be assumed that the meteoroids of interest in this

analysis can be represented by dustball meteoroids and solid stoney

meteoroids. Iron-nickel meteoroids will be neglected because of their

relative scarcity.

In applying the meteoroid damage factors to an evaluation of the

meteoroid hazard to spacecraft, it must be remembered that two meteoroid

distributions (an optimistic distribution and a pessimistic distribution)

were selected for analysis in the meteoroid distribution section of this

report. Thus, the most realistic combinations of meteoroid types and

meteoroid distributions will give upper and lower limits to the meteoroid

hazard. The pessimistic distribution and the pessimistic type of meteor-

oid, solid stoney, were combined to give the upper limit as a pessimistic

"outlook," and the optimistic distribution with the optimistic type of

meteoroid (the dustball) to give a lower limit or an optimistic "outlook."

Thus, a range of meteoroid hazards will be presented into which the actual

meteoroid hazard may be expected to fall. In all cases, the meteoroid

velocities used will correspond to the selected meteoroid masses according

to figure 5-

Evaluation of Meteoroid Hazard for Lunar Vehicle

With Single-Sheet, Monocoque Hull

To ilJ_strate the meteoroid hazard in space, the number of penetra-

tions and the probability of vehicle puncture will be evaluated for a

hypothetical space vehicle m-ith monocoque-hull construction on a manned

lunar voyage of 14 days. The effectiveness of multiple-sheet hull con-

struction will then be evaluated by comparing the number of penetrations

and the probability of vehicle puncture for a vehicle with this type of

hull against those of the vehicle with monocoque-hull construction. The

immediate problem, then, is to select the designs so that these evaluations

and comparisons can be made.

First, let us consider the experimental data presented in this report.

The choice of multiple-sheet hull designs is restricted to one of the

structures investigated in this series of tests. From the test results

shown in figures 2 and 3, it is obvious that the "best" structure inves-

tigated consists of two 1/32-inch sheets of 2024-T3 aluminum alclad

spaced i inch apart and the space between the sheets filled with glass

wool. If the vehicle shape is arbitrarily selected as a right circular

cylinder with dimensions appropriate for a two-man vehicle and the hull

material is 202_-T3 aluminum alcladwith a working stress of 20,000 pounds
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per square inch, then the thickness of a single sheet of aluminum required

to hold a vehicle internal pressure of i atmosphere is found to be 0.033

inch. This sheet thickness then will have to be the thickness of the

inner sheet of a multiple-sheet hull. Consequently, the structure tested

in the mltiple-sheet impact tests (with inner and outer sheet thicknesses

of 1/32 inch) is seen to be a hull structure that is also practical in

terms of vehicle structural requirements. Thus, the multiple-sheet hull

design evaluated here will consist of two O.033-inch sheets of 2024-T 3

aluminum alclad sheets, spaced i inch apart, with the space between the

sheets filled with glass wool. The hull weight of this vehicle is about

384 pounds.

The selection of the sheet thickness for the monocoque-hull vehicle

must now be made so that a reasonable comparison can be made between the

two designs. It is thought that the most informative comparison between

these designs can be made if the two vehicle hulls have equal weight per

unit area. This criterion, then, determines the sheet thickness of the

single-sheet hull vehicle to be 0.090 inch. This single-sheet hull design

can now be used to evaluate the meteoroid hazard in space.

Figure 6 presents a plot of the number of penetrations versus the

vehicle flight duration in days for the vehicle with the single-sheet

monocoque hull for both the optimistic and pessimistic meteoroid hazard

outlooks. It can be seen that for this vehicle hull design the vehicle

will be penetrated once every 1840 days (once in every 131 lunar missions)

if the optimistic meteoroid hazard outlook holds. If the pessimistic

meteoroid hazard outlook is the case, then the vehicle will be penetrated

about three times a day (43 times per lunar mission). In terms of pene-

tration probability, the optimistic outlook gives a probability of pene-

tration in one lunar mission of 0.76 percent, and the pessimistic outlook

gives a probability of penetration in one lunar mission of more than 99-99

percent. Thus, it is seen that, for this design at least, a meteoroid
hazard does exist.

Evaluation of Meteoroid Kazard for Lunar Vehicle With

Spaced, Glass-Wool-Filled, Double-Sheet Hull

The effectiveness of multiple-sheet hull design in reducing the

meteoroid hazard to space vehicles can now be illustrated by evaluating

the number of penetrations and the penetration probability of the selected

multiple-sheet hull design and comparing them against those of the single-
sheet hull vehicle.

Plotted in figure 7 is the number of penetrations versus the vehicle

flight duration for the multiple-sheet hull vehicle for both the optimistic

and pessimistic meteoroid hazard outlooks. If the optimistic meteoroid

hazard outlook holds, then this vehicle will be penetrated about once
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everY97,000 days (once in every 4,070 lunar missions). However, if the

pessimistic meteoroid hazard outlook is the case, then the vehicle will

be penetrated once every ii days. Expressed in terms of probability of

penetration in the 14-day voyage, the optimistic outlook gives a proba-

bility of 0.029 percent and the pessimistic outlook gives a probability
of 72.34 percent.

The effectiveness of the multiple-sheet design can now be evaluated

by comparing the penetration probabilities and the number of penetrations

of the multiple-sheet and single-sheet designs. If the optimistic outlook

holds, then the number of penetrations has been decreased from I in every

9 years for the single-sheet design to I in every 156 years for the

multiple-sheet design. The penetration probability is decreased from

0.76 to 0.025 percent. Now, if the pessimistic outlook holds, the number

of penetrations is reduced from 3 per day for the single-sheet design to

i every II days for the mltiple-sheet design. The penetration probability

is decreased from more than 99-99 to about 72.9 percent. Expressed in

another way_ the effective flight time without penetration of the vehicle

is increased by a factor of 39 with the multiple-sheet design. Even so_

it is clear that a meteoroid hazard still exists even for a vehicle with

multiple-sheet hull construction, particularly if the pessimistic mete-

oroid hazard outlook represents the actual conditions in space. Although

it may seem unnecessarily conservative to assume that this condition does

exist in space, our knowledge of the situation at the present time prohib-

its us from doing otherwise. Any other recourse could be disastrous to

the occupants and mission of the space vehicle.

It should be noted that the multiple-sheet design presented in this

report is probably very far from an optimnm design. It is thought that

other designs having much greater resistance to penetration can be
developed.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., May 8, 1961

• _ _ • •• i_ • _ _
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APPENDIX A

REDUCTION OF METEOR DATA TO OBTAIN THE METEOROID MASS

Photographic meteor observations can precisely determine such

quantities as velocity, trajectory, deceleration, and luminous intensity.

From these measurements, it is possible to calculate the mass of the

meteoroid in two ways. First, the "dynamic" mass can be determined from

the deceleration of the meteoroid as it enters the earth's atmosphere and,

second, the photometric mass can be determined from the measured meteoroid

luminosity.

DYNAMIC MASS CALCULATIONS

The drag of a meteoroid as it enters the earth's atmosphere can be

expressed, in terms of the meteoroid deceleration, as:

m (_) = -7.3×I0SCDPaVaA (AI)

With the assumption that the meteoroid is spherical in shape,

16.39 _dP s
m =, 6 PP

A = 6.944XlO-S(_> (A3)

Substituting (A2) into (A3) gives

(AS)

Substituting (A4) into (AI) and rearranging gives

m I / 3 pp2/3 _ 15.72 :¢ (6)a/sdDPa Va8 dV/dT (A5)

Since the meteoroid's veloclty_ deceleration_ and altitude (hence_

the air density) can be directly measured and the drag coefficient of a

body traveling at high velocity can be taken as 0.92 , then the product

mZ/3pp 2/s can be determined from equation (A5). If a meteoroid density

is assumed, then the meteoroid mass can be calculated or, conversely, if

a meteoroid mass is assumed, then the meteoroid density can be calculated.
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PHOTOMETRIC MASS CALCULATIONS

The luminous efficiency of s, meteor is defined as the fraction of

the total meteoroid kinetic energy that is converted into visible light.

This quantity can be expressed as:

p = 1.4734XI0_ 7 jT_T__ (A6)
my 2

Values for the luminous efficiency of meteors have been calculated in

great detail by Opik in reference 14 (among others), taking into account

meteor ablation and vaporization_ as well as the interactions between

atomic particles. From calculations such as this, astronomers feel that

the luminous efficiency of meteors has been accurately determined.

From the photographic observation of a meteor it is possible to

determine the product jT directly from the following equation.

j dL

Consequently_ the meteoroid mass is the only unknown quantity in

equation (A6).

Determination of the meteoroid mass from equations (A6) and (A7)

and substitution of the value for this quantity into equation (AS) leads

to a solution for the meteoroid density.

: ,: • /••::2::::_ _/::::• :, :
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TABLE I .- SUMMARY OF ROCKETS AND SATELLITE METEOROID MEASUREMENTS

Vehicle

Explorer I

Explorer III

Sputnik III
Pioneer I

Pioneer II

USSR SRI

Explorer VI
USSR SRII

Vanguard III
USSR SRIII

Date Mass sensitivity_

m_ grams

8Xl0-m°

2.5X10 -9

Nm, grams times impacts

per day per fta of mass

m or greater

5.4XlO-S

9. OX10-9

9-15-58

I0-10-58

11-8-58

1-2-99

8-8-99

9-12-59

9-18-59

10-4-99

i. IX10-8

-lO-l°

10-1°

3 •3Xi0-9

i .7X10 -s

2XI0 -8

3.3xi0-9
i •3Xi0-9

4.4XlO-S

3.2XI0-9

4.9×i0-6
6. iXlO -s

4.5×10-s
1.5XIO -s

4 .SXlO -s

3 •l×lO-S

19

[

%



2O

• I ¸I _ L_ _ • • _ _ _,_ • _ ' _i_ ¸ r ! • i _ • i _i _ _ _ ¸_ _ _x_ _ _ • _ • _ _i _i ¸¸ J _ ¸¸I_ ¸¸



boo", .._ D>

VELOCITY
CHAMBERS

GUN

_.-- -_ii..'..':::=..'. ...........:_.:+:.:...:.:.....:...:- E__
/

BLAST TANK

CAMERAS

PARK PHOTO STATION

MODEL AND SABOT

Figure i.- Test apparatus.

SPARK PHO'I O

A-27414. 1

7



22

12,000

I0,000

8,000

L)
¢1)

(/)

>_ 6, ooo
o_

0

0

>

4,000

2,000

0

I" spacing with
glass wool filler

I" spacingI ,i

T spacing

Target material =2024 T-3 Al.-Alclad
Total sheet thickness=0.062in.
Projectile: I/8" pyrex glass sphere

2 3 4 5

Number of sheets

Figure 2.- Variation of target ballistic limit as a function of number
of sheets.

) _ ,,



i!•_" ,_

j _ 3

23

2OO

160

JE}

120
C

¢1)

¢,-
o_

v

--_ 8O

4O

0

I
Target material =2024 T-5 AI.-Alclod
Total sheet thickness= 0.062 in.
Projectile: I/8" pyrex g ass sphere

{_ I" spacing withglass wool filler

_1" Spacing

2 5 4 5
Number of sheets

Figure 3.- Variation of projectile kinetic energy as a function of number
of sheets.



24

10-4

10-5
Pessimistic distribution

(/)
IE 10-6
O
L
E:n
I

t./')
It)
0

E 10 -7

._
0

0

:_ I0 -8

10-9

I0-10

iO-II

Optimistic dis_

Nm=2XlO -9

2x 10-7

\
10-4 10-3 10-2 I0 -I I I0 I

Number of impacts per square foot per day

Figure 4.- Meteoroid mass-number distribution.

I02 103



Lrx
Od

O

\

\

O
I

i

O
i I

O O

SWD_6- SSDW P!OJO_I_

0D
i

O

o
I

O

O

x

O
O

O
0_

In

O o

O

O
0J

O

O

O

oJ _"

T

O

O
.i-I

_Q
,1-I

4°
b_
-H
_3

4°
.H
O
O
rd
@

r_

.H
O

O

@

!
Ii

L_X

®

t
.H
F_



I0 2

I0

_: 1.0

.o
_2

g
o. IO-i

'S

Z i0- 2

10-:3

10-4

PesSoSliid isst_:ndeiytribe_ teio°To°nd W hi p_ilc 'dsist"rDbuUst_n I_nd

/ I 14-doy

_ / I / I, Y_'_ Surface area-_''_

7"i _9 554ft2 ._

l I I l I 1
10-2 1.0 102 104.

Flight duration, days

Figure 6.- Lunar vehicle with single-sheet, monocoque hull.

OA



27

A

4
6

3

I
0

NASA-Langley, 1961

I
o

A-_g 3

I I
O4 r¢_

I I I

O O O

suo!,to_,_auad_0 JaquJnN

o
°_

o

o_

LL

r-1

_0
!

..a

_d

_H
r_
.,H

r-1
O
O

?
r_

b.0

p_

-p

_8

!

b-

(D

.rl





NASA TN D-1039

National Aeronautics and Space Administration.

PRELIMINARY INVESTIGATION OF IMPACT ON

MULTIPLE-SHEET STRUCTURES AND AN EVAL-

UATION OF THE METEOROID HAZARD TO SPACE

VEHICLES. C. Robert Nysmith and James L.

Summers. September 1961. 27p. OTS pride,

$0.75. (NASA TECHNICAL NOTE D-1039)

Small Pyrex glass spheres, •representative of stoney

meteoroids, were fired into 2024-T3 aluminum alclad

• multiple-sheet structures to evaluate the effective-

ness of multisheet hull construction as a means of

increasing the resistance of a spacecraft to meteoroid

penetration. In addition, the meteoroid hazard to

vehicles in the space near the earth is evaluated on

the basis of the meteoroid distribution as determined

from astronomical and satellite measurements, high-

speed impact data, and hypothesized meteoroid struc-

tures and compositions for two representative space

vehicle structures, one with a single-sheet monocoqu e

Copies obtainable from NASA, Washington (over)

I. Nysmith, C. Robert

II. Summers, James L.

HI. NASA TN D-1039

(InitialNASA distribution:

47, Satellites; 48, Space

vehicles; 51, Stresses and

loads; 52, Structures.)

NASA

NASA TN D-1039

National Aeronautics and Space Administration.
PRELIMINARY INVESTIGATION OF IMPACT ON

MULTIPLE-SHEET STRUCTURES AND AN EVAL-

vU_TION OF THE METEOROID HAZARD TO SPACE
HICLES. C. Robert Nysmith and James L.

Summers. September 1961. 27p. OTS price,

$0.75. (NASA TECHNICAL NOTE D-1039)

Small Pyrex glass spheres, representative of stoney

meteoroids, were fired into 2024-T3 aluminum alclad

multiple-sheet structures to evaluate the effective-

ness of multisheet hull construction as a means of

increasing the resistance of a spacecraft to meteoroid

penetration. In addition, the meteoroid hazard to

vehicles in the space near the earth is evaluated on
the basis of the meteoroid distribution as determined

from astronomical and satellite measurements, high-

speed impact data, and hypothesized meteoroid struc-

tures an d compositions for two representative space

vehicle structures, one with a single-sheet monocoqu e

Copies obtainable from NASA, Washington (over)

I. Nysmith, C. Robert

II. Summers, James L.
IH. NASA TN D-1039

(InitialNASA distribution:

47, Satellites; 48, Space

vehicles; 51, Stresses and

loads; 52, Structures.)

NASA

%:

NASA TN D-1039

National Aeronautics and Space Administration.

PRELIMINARY INVESTIGATION OF IMPACT ON

MULTIPLE-SHEET STRUCTURES AND AN EVAL-

UATION OF THE METEOROID HAZARD TO SPACE

VEHICLES. C. Robert Nysmith and James L.

Summers. September 1961. 27p. OTS price,

$0.75. (NASA TECHNICAL NOTE D-1039)

Small Pyrex glass spheres, representative of stoney

meteoroids, were fired into 2024-T3 aluminum alclad

multiple-sheet structures to evaluate the effective-

ness of multisheet hull construction as a means of

increasing the resistance of a spacecraft to meteoroid

penetration. In addition, the meteoroid hazard to

vehicles in the space near the earth is evaluated on
the basis of the meteoroid distribution as determined

from astronomical and satellite measurements, high-

speed impact data, and hypothesized meteoroid struc-

tures and compositions for two representative space

vehicle structures, one with a single-sheet monocoque

Copies obtainablefrom NASA, Washington (over)

I. Nysmith, C. Robert

H. Summers, James L.
HI. NASA TN D-1039

(Initial NASA distribution:

47, Satellites; 48, Space

vehicles; 51, Stresses and

loads; 52, Structures.)

NASA

NASA TN D-1039

National Aeronautics and Space Administration.

PRELIMINARY INVESTIGATION OF IMPACT ON

MULTIPLE-SHEET STRUCTURES AND AN EVAL-

UATION OF THE METEOROID HAZARD TO SPACE

VEHICLES. C. Robert Nysmith and James L.

Summers. September 1961. 27p. OTS price,

$0.75. (NASA TECHNICAL NOTE D-1039)

Small Pyrex glass spheres, representative of stoney

meteoroids, were fired into 2024-T3 aluminum alclad

multiple-sheet structures to evaluate the effective-
ness of multisheet hull construction as a means of

increasing the resistance of a spacecraft to meteoroid

penetration. In addition, the meteoroid hazard to

vehicles in the space near the earth is evaluated on
the basis of the meteoroid distribution as determined

from astronomical and satellite measurements, high-

speed impact data, and hypothesized meteoroid struc-

tures and compositions for two representative space

vehicle structures, one with a single-sheet monocoque

Copies obtainablefrom NASA, Washington (over)

I. Nysmith, C. Robert

II. Summers, James L.
HI. NASA TN D-1039

(InitialNASA distribution:

47, Satellites; 48, Space

vehicles; 51, Stresses and

loads; 52, Structures.)

NASA


